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Abstract

In this paper we simulate the evolution and free particle motion of an individual nucleus that grows into a dendritic
crystal. The melt flow and the convective heat transfer around the crystal are simulated as they settle due to gravity. There
is an intricate coupling between the settling and the evolution of the crystal. The relative flow induced by the settling
enhances the growth at the downward facing parts, which in its turn affects the subsequent settling motion.

Simulations have been done in two dimensions using a semi-sharp phase-field model. The flow was constrained to a
rigid body motion by using Lagrange multipliers inside the solidified part. The model was formulated using two different
meshes. One is a fixed background mesh, which covers the whole domain. The other is an adaptive mesh, where the node
points are also translated and rotated with the movement of the solid particle. In the latter, the dendritic growth is sim-
ulated by the semi-sharp phase-field method.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

When solidifying a melt, for instance in casting of metals, the melt is typically cooled until its bulk temper-
ature is below the equilibrium freezing temperature Tm (see Fig. 1). Then any free nuclei in the melt may grow,
and often create dendritic ‘‘equiaxed crystals’’. These growing solid particles typically have a slightly different
density from the melt, and will thus begin to settle due to gravity. In technological casting situations, this will
give rise to a so-called ‘‘equiaxed region’’ at the bottom of the cast, where the crystals that have formed in the
bulk, and settled to the bottom accumulate. This is called the ‘‘columnar-to-equiaxed transition’’ (CET) [1–3].
Similar to other materials processing phenomena, this problem involves various spatio-temporal scales. For
example, dendritic growth on a microscopic scale has a time scale depending on the growth speed. But on
a macroscopic scale, one time scale is determined by the settling speed. Those two length scales may differ
by a factor of 5–100. Therefore, in order to predict the micro/macro structures of the ‘‘equiaxed region’’, it
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Fig. 1. Schematic of the solidification, ‘‘columnar-to-equiaxed transition’’ (CET).
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is important to model the transfer of mass, momentum, and heat on the macroscopic scale. But we cannot
neglect the microscopic scale since the micro-structure has a major impact on the properties of the final prod-
uct. Also, there is a coupling effect between the dendritic growth (in microscopic) with the particle settling due
to gravity (in macroscopic) that we have to take into account.

Recently, a group in Nancy successfully recorded the position and size of a single crystal, which settles in an
undercooled liquid solution of the model transparent system of Albert and Gérardin [4]. It reveals the neces-
sity to consider the relative movement effect of liquid and crystals on the growth of equiaxed crystals when
modelling solidification of a large system.

The micro-structure is significantly altered by the presence of melt flow during solidification [5,6]. In the
solidification process, the melt flow is mainly classified either forced convection or natural convection. The
forced convection is induced by electromagnetic stirring, rotation, pouring of the melt, etc. The natural con-
vection is caused by the density difference between the solidified and liquid phases or by the temperature
dependence of density of the liquid phase. With the presence of a gravitational force, the solidified parts
may move and rotate, to erase non-axially symmetric thermal effects.

During the last two decades, significant progress has been made in the computations of dendritic solidifi-
cation without convection. Simulations have been performed using techniques such as the phase-field method
[7–10], the level set method [11–13] and the explicit interface tracking methods [14,15]. The extension of these
methods to include the effect of melt flow during the solidification are relatively recent. Tönhardt and Amberg
[16] and Beckermann et al. [17] consider the solid phase as rigid and stationary. They used the phase-field
method to simulate two-dimensional dendritic growth into an undercooled liquid and set the flow velocity
in the solid phase to zero. Beckermann et al. introduced a mixture formulation and an auxiliary interfacial
stress term into the momentum equation to ensure the correction of the shear stress at the interface and hold
the solid in place. Al-Rawahi and Tryggvason [18] used the front tracking method to simulate the dendritic
growth into an undercooled liquid. They used a fixed mesh for the temperature equation in which the temper-
ature boundary condition on the interface is applied explicitly and the heat source is found directly from the
temperature gradient near the interface. They used another mesh for velocity and pressure, that exist in the
fluid phase only. This leads to remeshing problems.
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The level set method [19] is an alternative method to handle interface tracking. Chen et al. [11] was the first
to develop a level set method for the Stefan problem that directly solves the diffusion equation. They used
implicit finite difference method for solving the heat equation on a Cartesian grid with Dirichlet boundary con-
ditions imposed on the interface and a level set method for capturing the front between the solid and liquid
phases of a pure substance. However the treatment at the boundary produces a nonsymmetric linear system
that is slow to invert on each implicit time stepping. Zhang et al. [20] used a similar model like [11] to simulate
the solidification of molten droplets on a cold substrate. Later, Kim et al. [12] and Gibou et al. [13] applied the
level set method to simulate dendritic growth. They used the level set method to keep track of the front and
solved the diffusion field using an implicit time discretization method. Kim et al. [12] improved the algorithm
presented in [11] in order to have a more accurate computation of the interface velocity and showed that it
compares favorably to phase-field methods. Gibou et al. [13] proposed a level set approach that, while preserv-
ing the second-order accuracy of [21], produce symmetric linear systems that are fast to invert, hence a much
more efficient method than [11]. These authors then applied their algorithm to dendritic solidification in [13]
and showed that their results agree with solvability theory are are more efficient than [11,12]. [22] developed
high order accurate level set method for the Stefan problem and analyzed the influence of the definition of
ghost values on the accuracy of the method.

The main difference between the phase-field method and other methods for simulation of dendritic solidi-
fication is that the important physical mechanisms, such as curvature, anisotropy and kinetic effect are implic-
itly incorporated in the phase-field equations. Also, by solving a diffuse interface on a fixed, or adaptively
refined mesh, it avoids the need for applying temperature boundary conditions on the moving interface. It
turns out that when we compute the heat fluxes from the temperature nodal values, it shall not have any prob-
lem with the discretization error that may otherwise affect the energy solution [23]. The limitation of the phase-
field method is the requirement of mesh resolution at the interface and the requirement on the width of the
interface. But in this work, it is overcome by using a semisharp method, which was introduced by Amberg [24].

During the phase change, it is usually permissible to consider the volume change to be small and to apply
the Boussinesq approximation, effectively assuming the melt and solid to be incompressible while keeping a
density difference between solid and liquid. It is also necessary to take into account the fact that the solid
is rigid and it will move due to hydrodynamic, gravity and collision forces.

There are two main classes of methods for direct simulation of rigid particulate flows. The first type are
the methods which discretize the Navier–Stokes equations on a fixed/Eulerian mesh that covers the whole
domain where the fluid may be present. In this method, the flow in the particles is constrained to be a rigid
body motion by using Distributed Lagrange Multipliers method (DLM) (see [25,26] for the original method
and [27] for the modified method). The second type of methods uses a moving mesh following the motion of
the boundary of the particles in the fluid. This method requires remeshing and re-interpolation and is usu-
ally referred to as Arbitrary Lagrangian Eulerian (ALE) (see [28–31]). The reduced computational effort due
to saving the expensive mesh generation makes a big advantage for the DLM method over the ALE
method.

The method presented in this study combines features of the semi-sharp phase-field method for the simu-
lation of a dendritic growth and the fictitious domain method for the simulation of the rigid motion of the
dendrite. The semi-sharp phase-field method is implemented to allow a direct calculation of the growth and
shape of dendritic solidification. This method has also included the melt flow and its effect on the dendritic
growth. The fictitious domain method is used here to allow the dendrite to move and rotate freely in the melt.

2. Numerical modelling

Consider a two-dimensional rectangular domain that contains a solid phase and a liquid phase of a pure
substance in an undercooled region (region B in Fig. 1). The liquid is assumed initially to have a temperature
below the equilibrium freezing temperature Tm. The initial setup for dendritic growth is a seed placed inside
the domain. The dendrite grows into the undercooling melt. Assuming that the densities are different between
phases but constant in each phase, the heavier solid parts will settle down due to gravity and accumulate at the
bottom of the domain. In this system, the dendritic growth and settling problems are different in time and
length scales. Therefore, they will be simulated as two coupled physical problems as follows, see Fig. 2.



Fig. 2. Computational domains for equiaxed solidification driven by undercooling and gravity forces.
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The computational domain is divided into two parts. The local part Xl around the dendrite will overlap the
global part Xg, Fig. 2. The local part, Xl, is allowed to move and rotate together with the solidified substance
by using the coordination transformation (xg,yg)! (xl,yl). According to this assumption, the velocity in the
solid phase of local domain Xl is zero. Similar to Amberg [32] and Beckermann [17], we solve the Navier–
Stokes with a model such that the velocity is extinguished in the solid phase, and ensure that the interface
shear stress is correctly represented.

2.1. Simulation of the dendritic growth in the local domain

In the local domain, Xl, a single set of equations is written for all phases involved i.e., the solid and liquid
phases. The melt here is treated as an incompressible liquid in a translating and rotating coordinate system.
The Navier–Stokes equations of a viscous incompressible fluid are, therefore:
oul

ot
þ ul � rul þ

oU

ot
� 2x� ul � r� ox

ot
ð1Þ

¼ � 1

qf

rp þr � m rul þruT
l

� �
þ m

Hð/Þ ul;

r � ul ¼ 0 in Xl; ð2Þ
where ul is the liquid velocity in the local domain; U and x are the translational and angular velocities of the
solid particle, respectively; r is the position vector of the point with respect to the centre of mass of the solid
particle; p is the pressure and qf is the liquid density. The last term on the right hand-side of Eq. (1) originates
from a consideration that the morphology of the phase-change domain could be treated as an equivalent por-
ous medium at the solid–liquid interface [32]. The H(/) is the permeability of the mush, H(/) is infinite in the
liquid region and very rapidly decreases to a small value (i.e. 10�8) in the solid region. This term forces the
velocity to vanish as /! 1 (solid region).
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The local velocity at the boundary Cl is mapped from the global velocity by using the following equations:
ul ¼ ug � ðUþ r� xÞ; ð3Þ

xl ¼ xg �
Z

t
ðUdt þ ðr� xdtÞÞ: ð4Þ
The consistency method used in this simulation is based on the semisharp phase-field method developed by
Amberg [24]. It also includes the model of fluid flow in the melt along with solidification based on [16,17]. In
this work, we make a further modification of the phase-field model, including the translation and rotation of
an orthonormal coordinate system. The conservation of heat on the local domain takes the form
oh
ot
þ ul � rð Þh ¼ r2hþ ogdð/Þ

ot
; ð5Þ
where / is the phase field variable which is +1 in the solid and �1 in the liquid, gd(/) accounts for the change
in internal energy on phase change and should increase from 0 to 1 as / goes from �1 to +1.

The phase field evolution equation is written as follows:
s
o/
ot
� s ul � rð Þ/ ¼ W 2r̂2/� of ð/Þ

o/
� ogdð/Þ

o/
hðkhÞ; ð6Þ
where W denotes the interface width parameter, s links to the kinetic undercooling, and f(/) accounts for the
entropy densities, and h(kh) are functions to be specified below.

The anisotropy is included in Eq. (6) by writing the Laplacian r̂2/ as a function of the local normal
vector n,
r̂2/ ¼ r � g2r/
� �

� o

ox
g _g

o/
oy

� �
þ o

oy
g _g

o/
ox

� �
; ð7Þ

gðnÞ ¼ 1þ C cosð4bÞ; ð8Þ
where b ¼ arctanðo/
oy =

o/
oxÞ is an angle between the interface and orientation of the contours and C is the strength

of anisotropy.
In order to evaluate the kinetics of the model precisely, we follow the semi-sharp method of Amberg [24] by

choosing
f ð/Þ ¼ ð/� 1Þ2 for / > 0;

ð/þ 1Þ2 for / < 0;

(
ð9Þ

gdð/Þ ¼
1

2
1þ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

/2 þ d2

s !
; ð10Þ
where gd(/) is a slightly smoothed step function which has a value of d = 0.05. Amberg also pointed out that
the jump in function gd generates a jump in the gradient of /, which can be shown to satisfy the following
expression:
hðkhiÞ ¼
W 2

2

d/þ

dz

� �2

� d/�

dz

� �2
" #

; ð11Þ
where the interface contour between solid/liquid interface in the semisharp model is defined where / = 0 pre-
cisely. hi is the value of the temperature at the interface / = 0, and the z axis is chosen normal to the interface.
Solving Eq. (6) locally in the interface and inserting this solution (see [24] for details) in Eq. (11), gives
hðkhiÞ ¼ �
1

2

sU
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ sU

W

� �2
s

; ð12Þ
where the symbol U includes both the kinetic and the curvature terms, V denotes the local speed of the inter-
face, R the local radius of curvature, and d0 the capillary length,
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U ¼ V þ d0

R
W
s
: ð13Þ
Eq. (12) guide us to a specific form for the function h(khi). If this is taken as hðkhiÞ ¼ 0:5khi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ ðkhiÞ2

q
, Eq.

(12) will guarantee that, the linear kinetics �khi = sU/W will be satisfied.
The discontinuous condition on the square gradient of / in Eq. (11) can be implemented in finite elements

by rewriting as
d/þ

dz
� d/�

dz
¼ 2hðkhiÞ

W 2
=

d/þ

dz
þ d/�

dz

� �
: ð14Þ
Introducing the solutions for /+ and /� in Eq. (14) as above, we have a simple form that can be used as a
source for a line integral along the interface in the two dimensional case. In the 3D simulation the line integral
is replaced by an integration over the surface of the interface
Z

/¼0

r/ � vð ÞdC � d/þ

dz
� d/�

dz
¼ � sU

W 2
¼ kh

W
: ð15Þ
2.2. Simulation of settling dendrites in the global/coarse domain

The global domain, Xg, is the whole domain where the dendrite is growing and settling down by grav-
ity forces. In this domain, we will not re-simulate the growth of dendrite. The shape and size of the den-
drite are taken from the local domain to its correct position in the global domain. Here, the solid
particle is considered as a rigid body and the melt fluid, which is driven by the hydrodynamic and grav-
ity forces, will drive the solidified part as a rigid body. The method considered in this paper is a fictitious
domain method, which was introduced by Glowinski [25] and improved by Patankar [27]. In this model,
the flow in the solidified part is constrained to be a rigid body motion using a field of Lagrange
multipliers.

Let F be the fluid domain and S be the solid domain in Xg. The constraint of rigid body motion is repre-
sented by
u ¼ Uþ �x� r in S; ð16Þ
where u is the velocity of the fluid at a point in the solidified part; U and x are the translational and angular
velocities of the solid particle, respectively; and r is the position vector of the point with respect to the centre of
mass of the solid particle.

The conservation of momentum equations in F are
ou

ot
þ u � rð Þu ¼ � 1

qf

rp þ 1

qf

r � l ruþruT
� �

þ g in F ; ð17Þ

r � u ¼ 0 in F ; ð18Þ
where qf is the fluid density, u is the fluid velocity and g is the acceleration due to gravity.
The conservation of momentum equations in the solidified domain S is
ou

ot
þ u � rð Þu ¼ � 1

qs

rp þ 1

qs

r �D½K� þ g in S; ð19Þ

r � u ¼ 0 in S; ð20Þ

D½u� ¼ 1

2
ruþruT
� �

¼ 0 in S; ð21Þ
where qs is the density of solid phase, K is the Lagrange multiplier due to rigid constraint and D[K] is an extra
term due to the stress inside the solid which is required to maintain rigidity. In Eq. (19) the viscous diffusion
term is absent since the deformation rate is constrained to be zero inside the particle domain.
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The no-slip boundary and hydrodynamic force on the solid–liquid interface are implicit in the combined
system (fictitious domain method) since it becomes an internal force in the combined system. More about
the combined system can be found in Glowinski et al. [25,26] and Patankar et al. [27,33]. In the following sec-
tion of our paper, we shall have a cursory review of the implementation of this method.

3. Numerical implementation

The governing equations for the free moving dendritic growth are solved using the femLego tool [34]. The
dendritic growth is simulated on an adaptive mesh with refinement/derefinement. The domain size of this mesh
is small, just sufficient to cover a fully developed dendrite. The other much larger mesh, the global mesh, is
used to simulate the sedimentation problem. We use a uniform mesh for this domain. The solution procedure
is as follows.

Step 1: Simulate the dendritic growth.
� Given un

g, hn
g and SðtÞ, find the boundary condition un

l and hn
l for the local domain Cl.

� Solve the phase field Eqs. (5) and (6) for the local domain.
� Solve the Navier–Stokes Eqs. (1) and (2) with a permeability term in order to ensure the correction

of the shear stress at the interface and hold the solid stationary.

Step 2: Simulate the dendritic sedimentation.
� Updating the solid phase in the global mesh by interpolating from the phase field in the local mesh.

Since the global mesh is uniform, the work is fairly fast.
� Solve Eqs. (17)–(19) for the entire domain C ¼ S þ F .
� Calculate the particle velocities: Given u�g and SðtÞ, find the translational velocity Un+1 and angular

velocity xn+1.
� Explicit update of the particle position.
Xnþ1 ¼ Xn þ Unþ1 þUn

2

� �
Dt: ð22Þ
� Enforce rigid motion for the velocities at these grid locations inside the solid phase to give the cor-
rect velocity unþ1

g .
� Solve the heat equation in global domain, hnþ1

g .

Step 3: Loop to step 1 until the end of simulation.

3.1. Calculate particle velocity

Given un and the position of solid particle SðtÞ, we can find the translational velocity, Un, and angular
velocity, xn, of the particle:
Un ¼ 1

MðtÞ

Z
SðtÞ

qsu
n dx; ð23Þ

IðtÞxn ¼
Z
SðtÞ

r� qsu
n dx; ð24Þ
where M(t) is the mass of the particle, I(t) is the moment of inertia and qs is the density of solid particle. In
two-dimensions the moment of inertia I(t) is
IðtÞ ¼
Z
SðtÞ

qsðr2
x þ r2

yÞdx; ð25Þ
where r is the position relative to the centre of mass of the particle, r = x � X.



M. Do-Quang, G. Amberg / Journal of Computational Physics 227 (2008) 1772–1789 1779
3.2. Implementation of DLM

Eqs. (17)–(19) are the governing equations for both solid and liquid phase. First, we solve (17) for the entire
domain C ¼ S þ F . During this step, the solid object is treated the same as the fluid. The force term due to the
gravity in Eq. (17) is written as g(qs � qf)/qf, and is only applied in the solid region S.

Second, we follow the projection scheme that was introduced by Patankar [27], by enforcing rigid motion as
written in two steps
qs

û� u�

Dt
¼ /gS; ð26Þ

qs

unþ1 � û

Dt
¼ R; ð27Þ
where û is the intermediate velocity field in the particle domain, R is the unknown force that maintains rigidity
and S is the source term that it includes the forces that arise from the relative density and from the collision
forces for the general case where it has more than one solid particle. S can be calculated explicitly as follows:
S ¼ qsAc � ðqs � qfÞ
u� � un

Dt
þ u� � rð Þu�

� �
; ð28Þ
where /g represents the fraction of volume of solid phase, /g = 1 in solid and /g = 0 in liquid phase. Ac is the
acceleration of the particle due to collision [27].

The Eq. (27) is a projection equation. It maintains the rigid motion in a similar way as the pressure pro-
jection. So, to find an equation for the Lagrange multiplier, Patankar et al. took the divergence of (21) and
substituted (27) into that, which yields an equation for R,
D unþ1
	 


¼ D ûþ Dt
qs

R

� �
¼ 0: ð29Þ
The above equation implies that ûþ ðDtRÞ=qs is a rigid body motion, but it gives no information about
what this rigid motion should be. To simplify, Patankar imposes the condition that, in the projection step,
Eq. (27), the total linear and angular momenta in the solid region S should be conserved. Then, the solution
for un+1 in solid region S is unþ1 ¼ ûR. Where, ûR is the velocity field of rigid motion given by
ûR ¼ Uþ �x� r: ð30Þ

The rigid body velocity shall now distributed over the entire global domains to get the final velocity as
unþ1 ¼ ð1� /gÞûþ /gûR: ð31Þ
4. Validation

A first test case is a cylindrical solid placed at the centre of a cylinder of a radius 1 with prescribed unit
tangential velocity all around its boundary. This is chosen to verify the accuracy of the angular velocity com-
putation. This simulation is run for different mesh spacings. h = 0.05, h = 0.025 and h = 0.0125. The solid par-
ticle is placed at the centre with diameter d = 0.5. The flow is simulated with Reynolds number Re = 1 and it
was at rest in the beginning.

Fig. 3 shows the velocity field of a rotating cylinder. After a short time of keeping still, the particle begins to
rotate and quickly reaches to terminal angular velocity of x 	 1. Fig. 4 shows the evolution of the angular
velocity of the cylindrical particle with different mesh sizes h = 0.05, 0.025 and 0.0125. Where it shows that
the computed solutions converged with respect to the mesh size. A small error on the computation comes from
the quality of mesh. It makes the centre of mass of the solid particle vary in time and then slows the rotational
speed.

The second benchmark problem is the sedimentation of a single particle. As shown in Fig. 5, the positions
of two kinds of rigid bodies are shown in sequential times of 0.1 interval from t = 0 to 1. The computational
domain is a rectangle of 4 · 8. The diameter of the circular particle and the longest axis of ellipse is 0.5. The



Fig. 3. Velocity field of a Couette flow with a particle inside.
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material properties are qs = 1.25, ql = 1.0, m = 0.1. Initially, two objects are placed at [0,0]. Due to gravity
forces and hydrodynamic forces, the objects start to sediment to the bottom of the domain. Fig. 6 shows
the vorticity of two objects at t = 1. The elliptical object is falling down with a significantly reduced speed
due to the tumbling of an asymmetric object. It is observed that, there is a symmetry breaking problem that
takes place in the circular particle case. It falls along a trajectory that deviates slightly from a straight line. The
same phenomenon was also pointed out by Glowinski [26].

The movement speed of the solid particle in the case of a circular object is simulated for different mesh sizes
and compared well with the published solution in [26]. Fig. 7 shows the histories of translation velocity of the
disk with a diameter d = 0.25. The material properties are qs = 1.25, ql = 1 and l = 0.1. The figure shows a
converged solution and agrees well with the simulation data of Glowinski [26].

5. Dendritic growth in a gravity environment

For a dendritic growth into an undercooled pure metal, we consider the growth of a single dendrite and
allow it to move freely during the growth. The convection is simulated as it settles due to gravity. The global
domain is a rectangle of 8 by 16 non-dimensional units. A uniform mesh is used here with a spacing of 0.04.
The local mesh is another rectangle of 5 by 5 with an adaptive mesh refinement and derefinement. The
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minimum mesh size in this simulation is set to h = 510�4. The time-step is therefore chosen to be dt = 810�4 to
assure the stability of the scheme that is used to solve the phase-field equation in the local mesh. This implies
that a local Courant number is Co 	 1.3.

Fig. 8(a) shows the dendritic growth problem under anisotropy with four-fold symmetry. The dynamical
evolution of the morphology and position of the dendrite is shown from t = 0.1 to t = 1.3 with time intervals
of 0.2. At time zero, we consider a small initial seed as a circle of radius 0.035 with initial temperature 0 and
located at position [0,0]. The non-dimensional parameters used in this simulation are Pr = 1, Pe = 0.5. The
density of the solidified part is qs = 1.06 to compare with the density of liquid part which is ql = 1.0. The tem-
perature in the liquid phase is h1 = �0.5, W = 0.02, s = 0.002858 and k = 12.858, and the initial orientation
of dendrite is b0 = 0. As can be observed in Fig. 8, the dendrite is growing and does not break the symmetry in
the horizontal axis. The growth speed of upstream and downstream branches are different due to the down-
ward motion of the dendrite. With the low density difference and high viscosity of liquid melt, the rotation is
negligible and the shape of the dendrite is symmetric. At t = 1.3, the translational velocity is U = 6.03 and the
angular velocity is x = 0.03.

Fig. 8(b) shows the temperature contours at t = 1.3 in the global domain, which are valid outside the local
mesh, i.e. outside the crystal. Obviously, the gradient of temperature on the downward branch is higher than
the vertical and upward branches due to the compression of isotherms there. Consequently, the growth veloc-
ity of the upstream and vertical branches is faster than the growth speed of the downstream branch. The veloc-
ity and vorticity of the flow in the global domain is shown in Fig. 9. There is a small vortex pair created behind
the dendrite. It is not clear in the simulation on the global domain. But it is clear and more accurate in the
local simulation that will appear later in Fig. 11.
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The time history of the tip velocity of the different branches of the dendrite is shown in Fig. 10(a). Obvi-
ously, the tip velocity quickly reaches a quasi-steady state at t > 0.2. When the dendrite grows, the effect of
gravity increases. Therefore, the settling velocity of this dendrite is also increased. Fig. 10(b) shows that the
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Fig. 10. The tip velocity and settling velocity.
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settling velocity of the dendrite increases from 0 in the beginning to 6 at t = 1.3. At that time, the settling
velocity is approximately six times faster than the tip velocity of the horizontal dendrite branches.

The temperature and velocity field around a tip of a dendrite are shown in Fig. 11. This solution is the local
solution, that is attached to the movement of the dendrite and refined to resolve the solution close to the inter-
face. The method of solving the dendritic growth and settling clearly shows a high accuracy of temperature
and phase field around and in the interface. At the same time, we do not have to resolve whole the global
domain of simulation with the same extent.

The local and global meshes are shown in Fig. 12. In the local mesh, to ensure mesh resolution along the
vicinity of the interface, an adaptively refined and derefined mesh is used with an ad hoc error criterion
function
�1

Z
Xk

r2/þ �2

Z
Xk

r2h 6 tol: ð32Þ
The implementation of the mesh adaptivity can be described as follows: at each mesh refinement step, an
element Xk is marked for refinement if the element size is still larger than the minimum mesh size allowed,
h > hmin, and it does not meet the error criterion (32). Where �1 and �2 is an ad hoc parameters (in this sim-
ulation �1 = 3 and �2 = 50). In case an element meets the error criterion, it is marked for derefinement unless it
is an original element. At the next refinement step, elements containing hanging nodes are marked for refine-
ment. The refinement/derefinement stops if and only if no element is marked for refinement/derefinement.
More details about this scheme can be found in [35].

The global mesh, having a uniform mesh, is useful for the implementation of the Lagrange multiplier
method. The results as we can see in Fig. 8(b) are a global view of the temperature field. There is not enough
accuracy in the interface but it is correct outside the interface area, where only the effects of heat diffusion and



Fig. 12. The local and global mesh around a tip.
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heat convection are important. Meanwhile, in the local result, Fig. 11, with a refined mesh and using the semi-
sharp method [24], the temperature around and in the interface is correct and yields the Gibbs–Thomson
kinetics.

The solutions above assumed an initial orientation of the dendrite nucleus of b0 = 0. That is, one of the axis
of preferred growth of the dendrite is in the vertical direction, which results in a stable settling. This explains
why the rotation of the dendrite is small in this case. In the next simulation, assuming that b0 = �0.34 rad in
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the beginning, the vorticity and temperature field of a dendrite growing at t = 1.3 are shown in Fig. 13. With
the orientation of growth different from zero in the beginning, the dendritic branches are growing asymmet-
rically as can be seen in Fig. 13. The different speed of the growing branches depends on the local flow around
each tip, in agreement with the conclusion from [36]. When the shape of the dendrite becomes asymmetrical, it
easily rotates to search for other stable orientations. The evolution of the angle of the dendrite falling down
under gravity is shown in Fig. 14. It is well known that the shape of the dendrite is significantly altered by the
melt flow and direction of melt flow around it [5,6,36]. Then, the orientation of the dendrite in space will
decide the shape and the growth direction of the dendrite.

Fig. 15 shows the dynamical evolution for a case where the solid density is higher than in the previous sim-
ulation qs = 1.25, Pe = 0.15, and the Prandtl number is varied Pr = 1,0.1. Varying Pr = 1 to Pr = 0.1, the
comparison of dendritic position at each time and its shape is shown in Fig. 15. With Pr = 1, in Fig. 15(b)
the dendrite is just growing and falling down. The rotation is very small. Meanwhile, with Pr = 0.1, the rota-
tion is visible in Fig. 15(a). The graph in Fig. 16 shows an evolution of angles of dendrite with different Prandtl
numbers.
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Fig. 13. The vorticity and temperature of a dendrite at t = 1.3, with a starting b0 = �0.34 rad.
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6. Conclusion

A combination of the semisharp phase-field method and the fictitious domain method is presented to model
the dendritic solidification of a pure material. The solid phase in this method is solved by a rigid constraint



equation to the fictitious fluid flow and it can be rigid, growing in time, and move freely under gravity and
hydrodynamic forces. The hydrodynamic forces on the solid–liquid interface are implicit in this method. This
is the advantage of the fictitious domain method (FDM) of distributed Lagrange multiplier method (DLM).
The use of two domains for the growth and settling problems provides the advantage that simulations can be
performed in a problem involving different scales in time and space. In those problems, a large and coarse
mesh is used to simulate the settling problem, where we need to see the evolution of the dendrite settling under
the gravitational force. The other mesh, a small and adaptively refined mesh, is used for the simulation of den-
dritic growth, where the accuracy is very important.

Numerical investigations of dendritic solidification in a gravity environment are presented. In those cases,
the growth of a single dendrite freely moving through the melt is studied with different Prandtl numbers and
the starting angle of the growing orientation. With a slightly different density from that of the melt, the den-
drite is growing and settling under the influence of gravity. The shape and the symmetry of the dendritic solid-
ification depends on the growth orientation of the dendrite and the Prandtl numbers.
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